

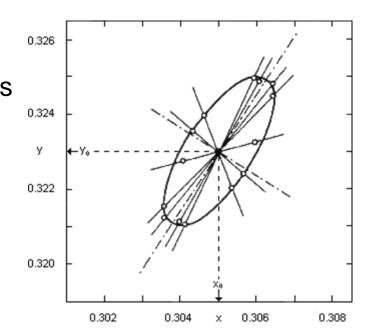
Color Consistency: a Quality Requirement for General Service Lamps (GSLs)

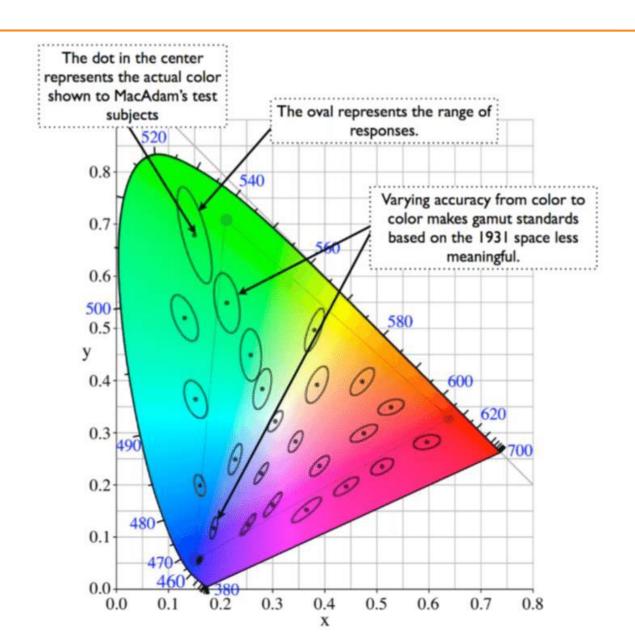
FORTALECIMIENTO DE ESTÁNDARES DE EFICIENCIA ENERGÉTICA EN ILUMINACIÓN Primera Reunión y Taller Presencial del Grupo Técnico de Eficiencia Energética (GTEE)

Table of Contents

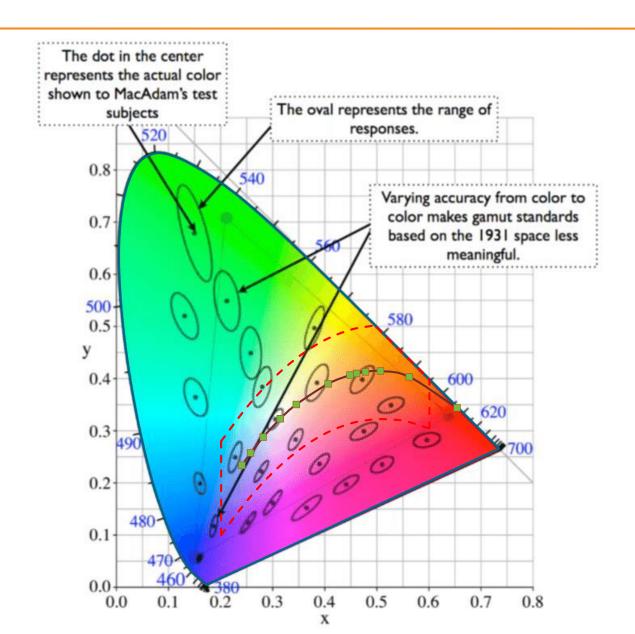
- 1 Color Consistency Metrics
- 2 Regulatory Requirement
- 3 Issues to Consider

MacAdam Ellipses – the History


- A MacAdam ellipse is an area in a chromaticity diagram which contains all colors that are indistinguishable to the average human eye, from the color at the center of the ellipse
- Elliptical shape represents the just noticeable differences in chromaticity
- In the late 1930's, Dr. David L.
 MacAdam set up an experiment
 where a trained observer viewed
 two different colours, at a fixed
 luminance of about 48 cd/m²

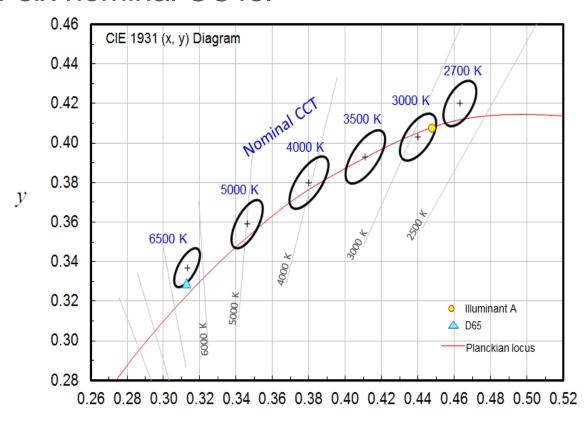

MacAdam Ellipses – the History

Methodology:

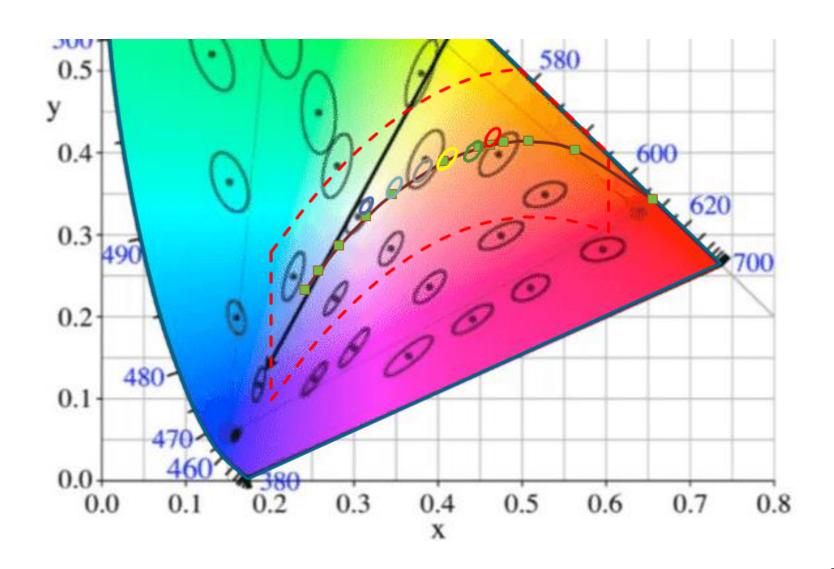

- One color (the "test" color) was fixed, and the other was adjustable by the observer. The observer adjusted the color until it matched the test color
- MacAdam found that all of the matches made by the observer fell into an ellipse on the CIE 1931 chromaticity diagram
- Measurements were made at 25 x,y chromaticity points on the diagram, and the size and orientation of the ellipses varied
- Thus, there are 25 ellipses measured by MacAdam, as shown on the next slide

MacAdam Ellipses – the 25 color points

MacAdam Ellipses – the 25 color points



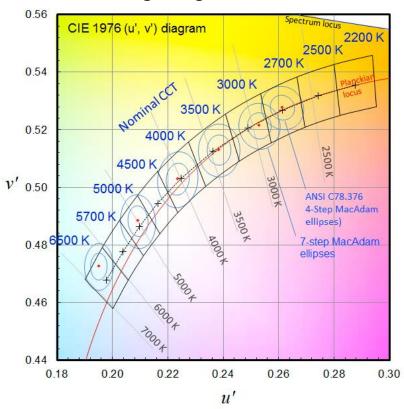
MacAdam Ellipses - Interpolating to other color points


 Researchers studying this issues have to date concluded that there is no mathematical model from interpolating/extrapolating MacAdam ellipses (major & minor axes length and orientation) for other points in colour space

MacAdam Ellipses in Standards

 IEC 60081 (2002) - Performance Standard for Fluorescent Lamps defines 5-step MacAdam ellipses for six nominal CCTs.

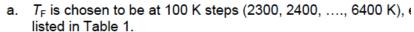
MacAdam Ellipses – Standards and the original color points



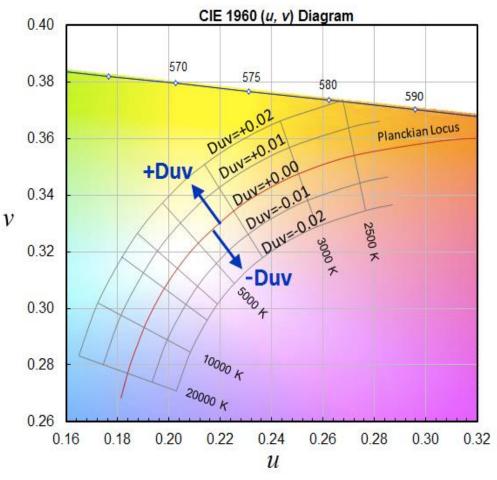
ANSI Quadrangles – C78.377-2017

IEC 60081 for Fluorescent Lamps (5 step MacAdam ellipses)

ANSI C78.377-2017 Chromaticity Specifications for Solid State Lighting Products

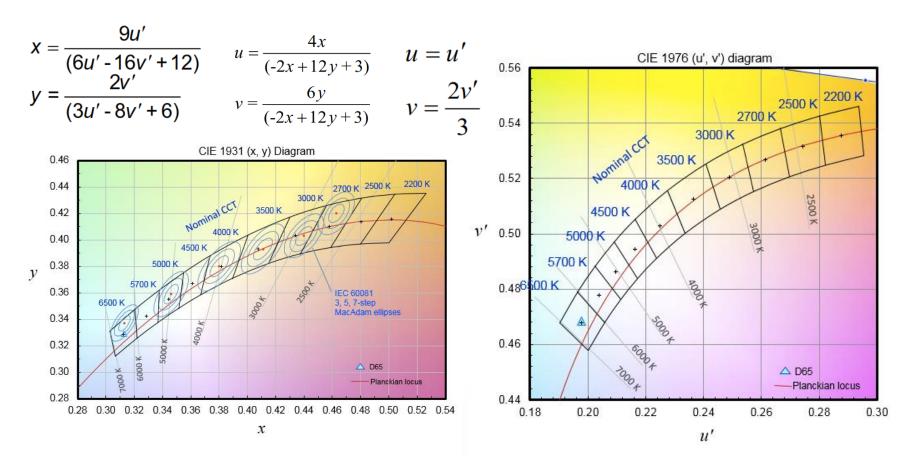

1st version 2008 (Ohno, Technical coordinator)

ANSI C78.377-2017


Table 1 **Basic Nominal CCT Specification**

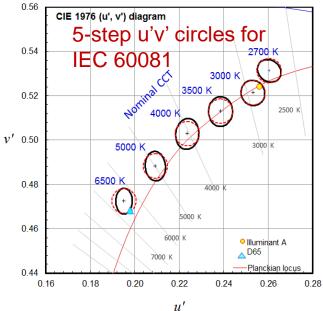
Duv defined in ANSI C78.377

Nominal CCT Category (K)	Target CCT and Tolerance (K)	Target Duv
2200	2238 ± 102	0.0000
2500	2460 ± 120	0.0000
2700	2725 ± 145	0.0000
3000	3045 ± 175	0.0001
3500	3465 ± 245	0.0005
4000	3985 ± 275	0.0010
4500	4503 ± 243	0.0015
5000	5029 ± 283	0.0020
5700	5667 ± 355	0.0025
6500	6532 ± 510	0.0031
Flexible CCT (2300 – 6400)	$T_{\rm F}^{1)} \pm \Delta T^{2)}$	$D_{\rm uv}(T_{\rm F})^{3)}$



b. $\Delta T_F = 1.1900 \times 10^{-8} \times T_F^3 - 1.5434 \times 10^{-4} \times T_F^2 + 0.7168 \times T_F - \S$ c. $D_{uv}(T) = 0$ for T < 2870 K, $D_{uv}(T) = 57700 \times (1/T)^2 - 44.6 \times (1/T)$

Specifications expressed in (x, y) or (u',v')


- There is a mathematical relationship between the different systems for chromaticity
- CIE 1976 (u', v') Diagram is recommended

CIE TN 001 Chromaticity Difference Specification

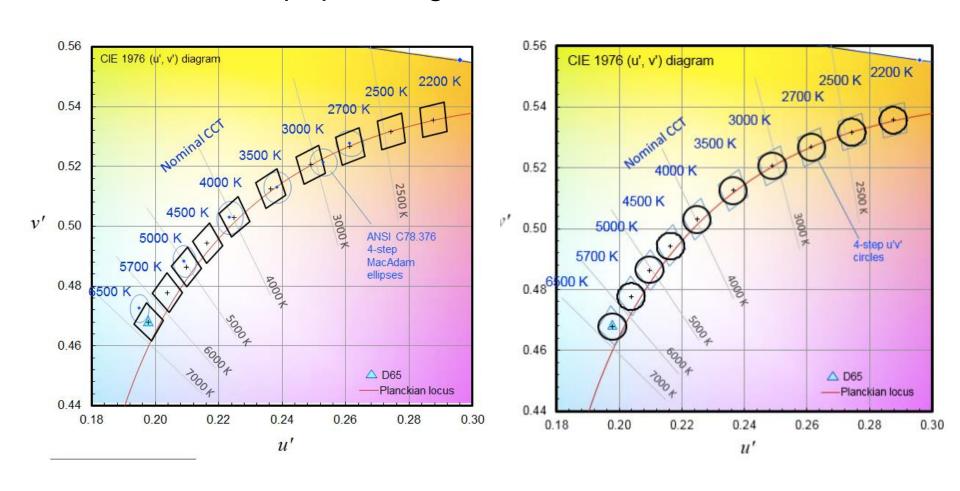
Published in July 2014

u'v' circle is recommended to replaceMacAdam ellipses

- Requires 3 parameters
- No standards for interpolation
- Research by 1 subject

u'v' circle: a circle with radius r on CIE (u',v') diagram. $(u'-u'_c)^2 + (v'-v'_c)^2 = r^2$

n-step u'v' circle: u'v' circle with a radius $n \times 0.0011$. $(u'-u'_c)^2 + (v'-v'_c)^2 = (0,0011 \cdot n)^2$


(This corresponds to *n*-step MacAdam ellipses.)

CIE TN 001: Freely available on CIE website

Annex B, C for Smaller Tolerances

Annex B. 4-step quadrangles

Annex C. 4-step u'v' circles

Table of Contents

- 1 Color Consistency Metrics
- 2 Regulatory Requirement
- 3 Issues to Consider

Recommended Regulation Requirement

Requirement is based on ANSI Quadrangles

Table 1
Basic Nominal CCT Specification

Nominal CCT Category (K)	Target CCT and Tolerance (K)	Target Duv	Duv Tolerance
2200	2238 ± 102	0.0000	
2500	2460 ± 120	0.0000	T_x : CCT of the source
2700	2725 ± 145	0.0000	For <i>T</i> _x < 2870K
3000	3045 ± 175	0.0001	0.000 ± 0.0060
3500	3465 ± 245	0.0005	For <i>T</i> _x ≥ 2870K
4000	3985 ± 275	0.0010	$D_{\rm uv}(T_{\rm X})^{3)} \pm 0.0060$
4500	4503 ± 243	0.0015	$D_{\rm uv}(I_{\rm X})$ \neq 0.0000
5000	5029 ± 283	0.0020	
5700	5667 ± 355	0.0025	
6500	6532 ± 510	0.0031	
Flexible CCT (2300 – 6400)	$T_{F}^{1)} \pm \Delta T^{2)}$	$D_{\rm uv}(T_{\rm F})^{3)}$	

a. T_F is chosen to be at 100 K steps (2300, 2400,, 6400 K), excluding the first ten CCTs listed in Table 1.

b. $\Delta T_{\rm F} = 1.1900 \times 10^{-8} \, \text{x} \, T_{\rm F}^3 - 1.5434 \times 10^{-4} \, \text{x} \, T_{\rm F}^2 + 0.7168 \, \text{x} \, T_{\rm F} - 902.55$

c. $D_{uv}(T) = 0$ for T < 2870K, $D_{uv}(T) = 57700$ x $(1/T)^2 - 44.6$ x (1/T) + 0.00854 for $T \ge 2870$ K.

EU Regulation Requirement

- MacAdam Ellipses are an old metric system which is not optimal for LED lighting
- The European Lighting regulation however is continuing to use this metric – however, six steps rather than five steps

/	
Colour	
consistency for	Variation of chromaticity coordinates within a six-step MacAdam
LED and OLED	ellipse or less.
light sources	

 The Technical Committee may consider this requirement, or a slightly more stringent one (five-step MacAdam ellipse, as required in the draft South African regulation)

Table of Contents

- 1 Color Consistency Metrics
- 2 Regulatory Requirement
- 3 Issues to Consider

Issues to consider?

- MacAdam Ellipses are a workable solution and could be appropriate
- Newer and better metrics are available
 - \(\Delta CCT \) and Duv quadrangles
 - ∆u',v' circles
- Perhaps consider having a review clause in the regulation which highlights the fact that colour consistency metrics may change in the future
 - no additional (re)testing is required just change in colour system metrics

Thank you, any questions?

Steve Coyne

Consultant

Director

Light Naturally

T: +61 413 314 346

E: steve@ligthnaturally.com.au

Michael Scholand

Senior Advisor

Policy & Analysis Team

CLASP | Europe

T: +44-7931-701-568

E: mscholand@clasp.ngo